If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q-q^2=0
We add all the numbers together, and all the variables
-1q^2+6q=0
a = -1; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-1)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-1}=\frac{-12}{-2} =+6 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-1}=\frac{0}{-2} =0 $
| 5-(x-4)=2x+3(x-1) | | 12y-70=-34 | | 12y+70=-34 | | 0=3x-16+4 | | 19.5=0.432h-10.44 | | -4x+7x+8=26 | | 11-2x+5=6x-6 | | c=75*2+10 | | 47=4z−11 | | 4x^2+7=8x | | 8x-4=8^10 | | 3/4=x+8/16 | | 10k+7=9k | | 8(w-2)=7(w+2) | | 9p+6=-10+7p | | -3-5s+10s=5+4s | | -6+3z=10+5z | | -10-3j=-8j | | -7+9g=-7g-7 | | -8b=-7b+9 | | -2y=-8-y | | -6z+7=-5z | | 2(x3+3)=18 | | 7j=5j-10 | | 7t-6=6t | | 12=z=30 | | 10+3w=w | | 2d-3=3d | | 20=4(x-8) | | 8s=-7+7s | | 6x+6-9(x+1)=4x+2 | | |x|=-13 |